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FREQUENCY DEPENDENCE OF DIELECTRIC LOSS
IN CONDENSED MATTER

I. INTRODUCTION

The dielectric response of solids and liquids has been the subject
of intense investigation over a long period of time extending to this
date, and pursued by physicists, chemists and engineers alike. A
detailed survey of the dielectric properties of a wide range of solids
has been given recently by Jonscher.1 It was observed1 that the die-
lectric response functions in frequency or in time depart strongly from
the Debye response for a large number of essentially dissimilar materials
and fall into a remarkably common or '"universal" pattern. In particular,
the frequency dependence of dielectric loss follows the empirical law

X" (@) « o™l with 0 <n <1 (1)

extending over several decades of frequency from low audio and sub-audio
to w/2m Jlog Hz. For some dielectrics, a broad loss peak may be found
at lower frequencies. Genuine Debye behavior with the complex suscepti-
bility given by x(w) « (1 +iu)T)-1 is seldom observed in solids.
Examples of the materials that obey the empirical law (Eq. (1)) include
inorganic ceramics; ionic conductors; polymeric materials, inorganic
crystalline and amorphous materials including glasses, insulating or
semiconducting; and organic and biological systems. By way of these
examples we see that the frequency response (1) is similar for systems
with permanent dipoles and with hopping charge carriers of electronic or
ionic nature. It is valid in covalent, ionic and molecular solids, in
single crystals, polycrystalline and amorphous structures; hence the
behavior (1) is apparently independent of the particulars of the
material. At higher frequencies, 109 Hz and up, quantum effects involv-
ing lattice mode excitations and/or electronic excitations become
prominent and, as is well known, the response then differs from
material to material, and as such will not be of interest to us in the
Note: Manuscript submitted August 16, 1978.
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present context.

The various types of dielectric response are summarized in Fig. 1.
We note the virtual absence of the pure Debye response; and the valid-
ity of the universal law of dielectric response, (1), in a remarkably
wide range o7 physical and chemical situations, and over a very wide
range of frequencies. In some types of dielectrics the universal
response (1) is followed at low frequencies by a loss peak referred to
as a and @ peaks, or by another universal response with n typically
between 0.1 and 0.3.

It is this state of affairs that has motivated us to seek a
renewed understanding of these phenomena in terms of a common or

"universal" characteristic across the entire spectrum of materials and

to associate such a characteristic with some physically simple and
"elementary" principles or properties. In the next section we shall
present several elementary principles which when combined enable a
derivation of the "universal" law (1) regardless of the physical,
chemical and geometrical properties of the solids, and also regardless
of the nature of the electrically active species responsible for polari-
zation, whether dipoles, electrons or ions. Then in Section III we
discuss several examples of low energy excitations expected in a host of
systems that satisfy these elementary principles. In Section IV we
derive the universal fesponse (1) and the possible presence of a loss

peak at lower frequencies. Finally, in Section V we make some con-

cluding remarks.
II. INFRARED DIVERGENCE AND THE "UNIVERSAL" LAW y" (W) = w™"

Infrared divergence phenomena, although not commonly observed in

1

physics, have been seen in several instances. The most well-known case
is in quantum electrodynamics where the infrared divergence manifests
itself in a Bremsstrahlung expetiment2 of a fast charged particle. In

the realm of solid state physics3’4

an example of infrared divergence is
thought to be provided by the peculiar shape of X-ray absorption edges
of metals,5 and the "orthogonality catastrophe" for an impurity poten-
tial inserted in a Fermi gas.6 These examples are by no means exhaus-
tive but the subjects they cover demonstrate that infrared divergence is
not uncommon. Excellent reviews on the subject are available.a’4

The features common to systems exhibiting the infrared divergence

2
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phenomenon are (a) the sudden application of a potential, or a sudden

change of the potential or the Hamiltonian; and (b) availability of low-

energy excitations of the system and its response to the sudden potential

change dominated by the emissions of these low~energy excitations. In

=9 oilen,

the time domain the phenomenon is the transient response
system to that abrupt change of potential. Infrared divergence occurs
whenever the suddenly switched on potential V excites some low energy
excitations, with density of states|U(E) for excitation energy E, which
is such that VZ(E) N(E) « E. In this instance there is an increasingly
high probability of exciting decreasingly small energy excitations and
this causes a power law divergence of the response in the frequency
domain. In the X-ray edge problem in metals an X-ray photon when
absorbed, suddenly switches on a hole-core potential V for the conduc-
tion electrons. The low-energy excitations here are the electron-hole
pairs.

In the later sections we shall argue that within a broad classifi-
cation of dielectrics, according to a scheme to be outlined, there exist
states which, for convenience, we shall refer to as correlated states.
These correlated states have a smooth and continuous density of states
N(E), which we take as constant N. Low energy excitation of the cor-
related states with excitation energy E consists of removing an

"unoccupied" state and is the analogue of the

"occupied" state to an
electron-hole pair excitation in the X-ray edge problem.

The charged particles or dipoles responsible for polarization in
the dielectrics undergo quantum transitions, including changes in their
positions/orientations, between preferred states in an abrupt manner by
hopping or jumping movements such that the time 1/v taken by the actual
transition is negligible in comparison with both (i) the time spent on
average in the respective preferred states, and (ii) the time charac-
teristic of the low energy excitation of the correlated states. The
condition (i) is invariably satisfied in solid dielectrics. That con-
dition (ii) is also satisfied will become clearer after we have con-
sidered the nature of the correlated states.

Due to the charged particle (dipole) transition a potential is

NP




suddenly switched on which acts on the correlated states. The low-
frequency response of the dielectric to this potential involves the emis-
sion of low-energy excitations of the correlated states. We shall argue

that the low energy excitations of these correlated states have a density

of states N(E) = E, and that the potential change V has little or no E
dependence. It follows that the conditions for an infrared divergent
dielectric response of the correlated states are satisfied. The mean ]
number n of correlated state excitations is then n « bvaszc EdE/Ez,

which diverges logarithmically, where E, is the upper "cut-Off" of the

correlated state excitation energy. The Fourier transform to the time

domain of the "universal" relation (1) is i(t) = t %, i.e., the widely

observed Curie-von Schweidler law1 of depolarization. It is interesting

to note that the infrared divergence problem when considered in the

7-9 does lead to the time

decay of the response function for large times as S(t) = t . The

time domain as a transient response problem

derivation of the complete dielectric response will be deferred to
Section IV, after we have discussed the correlated states in a broad

classification of dielectrics in the next section.

III. Correlated States

"universal law," Eq. (1) !

In the preceding section we connected the
to an infrared divergent response of correlated states. For this inter-
pretation to follow it is necessary for such states to be prevalent in
dielectrics and satisfy two rather stringent but interrelated criterion:
namely (i) the characteristic response time for the correlated states is
long in comparison to the switching of the Hamiltonian and (ii) these
low energy excitations are not in general thermodynamically accessible
at the moderate temperatures; i.e., several 100°K, since otherwise we
expect significant temperature smearing of the effect. Below we discuss
several examples of such correlated states which can reasonably be
expected to be present in many dielectrics. One should note from the |
onset that although these examples are quite general, they are by no

means exhaustive.
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(a) Dielectrics with Electron Pairing Interactions and States

Andersonlo

has recently proposed a model of amorphous semicon-
ductors which emphasizes the role of electron pairing interactions in
these systems. Anderson's ideas should apply to a large number of dia-
magnetic dielectrics. The concept of strong local electron pairing
interactions arises from the observation that by and large if a par-
ticular electronic state is singly occupied, the atom or atoms prin-
cipally associated with this state will adjust their positions in such
a way as to lower the energy of this state relative to its value if it
were constrained to be unoccupied. This effect can produce a self-
trapping of the electron in a manner related to the formation of a
small polaron; however, it also makes it favorable for the spin-mate of
the occupied state to be occupied and in turn the two electrons can be
more strongly self-trapped in a correlated way. The resultant quasi-
particle (the two electrons and the concomitant lattice distortion) has

10 for obvious reasons a bipolaron. Of course the formation

been termed
of such a quasi-particle is resisted by the mutual coulomb repulsion of
the constituent electrons, but only in comparatively few systems, such
as the transition metal oxides or impurity bands in crystalline semi-
conductors does this repulsive interaction dominate, giving rise to e.g.
spin density fluctuations.

In order to develop further the idea of 1local distortion mediated
effective electron-electron attractive interaction Anderson has employed
an effective negative U Hubbard-like term gni¢ni+ to model the effect
where ﬁic is the number operator for an electron of spin ¢ in a state
centered at the "site" ij |ig>. One should keep in mind that i could
well index the up and down spin states associated with a group of atoms
and not just a single one. Let us describe a group of such centers in
contact with one another as well as alternate states of the ‘system
(those with U, = 0) by the simplified Hamiltonian:

% R..at + ¥ U.4.,n (2)

S Eé e ijoij%ic%jo T 1 Vi ittiy

create and annihilate electrons of spin ¢ in the state

+
where a, , a,
ig? Tig

|io>, and we take Rij as R if i,j are nearest neighbors and zero other-




wise. The parameters {Ei} and {Ui} are considered as random variables
obeying the joint probability distribution P(Ei’ U;) which for the time
being is left unspecified. This model can be made to mimic many dif-
ferent situations depending on the choice of P(E.,U.).

To obtain results from (2) we have developed11 a generalized mean
field-like method wh1ch entails linearizing the many-body terms U, i%4054

i VA

as Uini*ni+ Z U nl_onlo 1+ni+where Ui“if“i% is present to prevent
double counting of the Lnteraction and the conditionally averaged
number of spin O electrons at the site i is given by the relation

A

n, = - - 5 JaEE(E)g; (ED) (3)

with £ the fermi function and E' denotes the lim (E+ls) Equation
s>o*
(3) provides a set of generalized Hartree Fock-like self-consistent
. . . \" . .
relations determining the parameters n; since the Green's functions

8¢ entering these formulae are defined as g, e <id|(z-He1)-1|0i>

=Z n 4
where He1 (E Ulnl_o %ot 1JORlJaIOaJu and hence depends on LY
For convenience (3) can be recast as ;6" -(Im/m) [dE£(E)/(E-E. -Ufﬁxo

A i)’ where Ai is the usual self-energy and is a function of { jo}’ E
and R.

To solve these self-cousistent conditions we employ the long
established coherent potential approximateion12 (CPA) to obtain the self
energies Ai' This entails defining an effective medium characterized
by a single potential Zo which is energy dependent and can be complex,
in such a way that the G(E-Zo) = <gi°(E;;! where the brackets < >
here and henceforth denote an average over the random variables entering
Hel and G is the Green's function obtained by replacing the site
diagonal random potentials of Hel by Zo at each site i. The CPA is
exact in both strong and weak scattering (virtual crystal) limits and
hence provides an interpolation scheme for treating the intermediate
cases. The use of this method greatly simplifies the computations since
its functional form of Ai can be easily found using established tech-
niques once the "lattice" structure is specified. For example, if we
assume a simple chain then A = (E-Zo) -/{(E-ZO)Z-ARZ}. The CPA equation

defining Zo and hence A can be written explicitly for the present model




i“io
We now have as 1nputs into the formalism some specified tempera-

as: [[P(;,U,)dE, av, /[s B -0y (E U020 = 1/[E-2-a2,)].

ture, T, and number of electrons in the band, Nel’ as well as particular
functional forms for G(E) and P(E-,U.). The calculation then proceeds
as follows: First we assume the functionm 5 (E iU ) and then solve the
CPA equations using a modified Newton-Raphson techn1que to obtain ZO(E)
and hence A(Zo). There are presumably many ZO(E) satisfying the CPA con-
dition for a particular E; however, the correct branch of ZO(E) goes as
<Ei+Ui£io>at large energies, and this solution can be analytically
extended into the region of interest (energies within the band) by use
of the Newton-Raphson method. In doing this we have found it most effi-
cient to follow a path in the complex plane slightly above the real axis
(E + in; n = .05) and then take the limit n+0+ numerically. Having so
determined A (a ) we can then find the chemical potential y of the
system from the usual relation N - (Z/H)qudE/{(e~B(E_u)+1)(E -L ﬂA(Z ))}
where in obtaining this condltlon, we have employed the CPA equation.
Note the CPA determined Zo satisfies the important sum rule
de/(E—Z -A(Z )) = 1. Having Z (E+) and 4, we then calculate a new
function ﬁ (E ;005 ) from (3) and this procedure is iterated until self-
consxstency is establlshed, i.e. nﬁU(Ei’Ui) = nhc(Ei’Ui)' If a con-
tinuous probability distribution is assumed for the random variables,
it is of course not numerically feasible to establish self-consistency
at each point in (E, i U ) space. In these instances we establish self-
consistence at a grld of points assuming that n (E iU; ) can be
adequately represented for intermediate values by trape201da1 interpola-
tion. We have found for simple continuous probability distributions
that this procedure converges very nicely (well within the realm of
numerical feasibility) as the number of points in the grid is increased.
Note that usually more than one self-consistent solution exists and this
will prove important to our subsequent development.

Before detailing some of the examples that we have treated, it is
convenient to backtrack somewhat and draw a relationship between elec-
tron pairing interactions and covalency and in so doing motivate these

cases and further stress the generality of the pairing ideas.

el
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As a prototype consider a simple dangling bond such as one associ-
ated with an Si atom which is bonded to three neighboring silicons
leaving a dangling hybrid. If we denote by X the displacement of this
atom from where it would sit if the dangling hybrid were constrained to
be singly occupied with energy Eh then a Hamiltonian partially
descrlblng the energetics of this atom is Hh= gEhnh0 Ahxh(nh¢+nh+1)

+ c xh/2, where Yo is the number operator for electrons of spin O in
the dangling hybrid orbital |ho>. The last term entering Hh is a back-
bond stretching energy and the second is the so-called dehybridization
energy.14 If we have a group of such nonbonded states interacting with
one another then a simplified Hamiltonian describing the situation is

H = EOEI o fllxl(n +n, -1) + Zc x2/2 ?chJaIG io We can now view
the displacements X as parameters entering the Hamiltonian to be deter-
mined self-consistently by requiring the free energy of the system to
be stationary with respect to their variations. This results in a set
of self-consistent conditions which can be used to eliminate the
parameters x. . It is then a simple matter to show that the resultant
Hamiltonian is essentially similar to the negative U model (2) within
the context of our mean field approximation if we make the identifica-
tion: Zkflci*ﬂi,E?*Ei+Ui/2. Thus we expect the negative U model to
incorporate the behavior of a simple nonbonded orbital since the
analysis of course is not limited to only the Si dangling hybrid but
applies whenever one has a dangling bond associated with covalent back-
bonds and hence is quite general. Furthermore, in amorphous partially
covalent materials because of the more localized nature of the wave
function in comparison to the crystalline case one expects similar
effects to arise from states with origin in the conducting band.

Indeed in an amorphous material one would expect after Anderson10
that the one electron potential Eh obeys a continuous probability
distribution P(E ) spanning the forbldden gap. To model the resultant
situation we have solved the self-consistent equation (3) assuming
P(Ei’Ui) = G(Ui-UO)W(Ei) where W(Ei)/B = 1/2 for -1 < Ei/B < 1 and zero
otherwise and U,/B =-3; B is unperturbed half bandwidth. Also we

assumed that T=0, Ne1=1 and employed as an unperturbed Green's function,




G, appropriate for a Cayley tree of coordination number six. In Fig. 2
we exhibit the numerically determined lowest energy state of the

system (solid line), as well as another self-consistent solution (dashed line)
which represents a low-lying excitation of the system. The two solutions
essentially differ from one another by the transfer of electrons from
one group of pairing centers to another, and in this way, although there
is a large gap in the one-electron spe-trum very low lying excitations
can be achieved leading to a gapless pair state spectrum. To understand
this behavior further consider two isolated pairing centers labeled 1i,j
in competition with one another for two electrons. Then if Ui = Uj 1t
is not the magnitude of U that determines the occupancy but rather E.,
Ej' For example if Ei <Ej then the site labeled i is doubly occupied
and that labeled j is doubly empty in the ground state. Thus, although
the one electron states lie at Ei + Ui and Ej’ and are hence usually
well separated in energy (5.1ev), excitations of the system that require
only energy Ei-Ej which becomes vanishingly small as Ei*E- can be
achieved by removing the electron pair from the site i to the site j.

In the case Rij*O, the density of pair state excitations is then

S P(Ei + UyZ) which is continuous and slowly varying around Eg and as

we have seen a similar picture also applies if we assume some coupling
between the pairing centers.

Such a smooth distribution of self-trapped pair state excitations
is expected to have a character sufficient to produce an infrared
divergence at very low temperature. This is so because the density of
states of low energy pair state excitations with energy E is sz(Ef)E
where N(Ef) is the density of pair states at Ef. Furthermore, the
matrix elements V]..j of the potential change V abruptly switched on by
the polarizing species should on the whole be independent of Ej-Ei, and
the fact that the pair states are strongly self-trapped implies that
their response time can be much longer than the time characteristic of
the hopping or reorientation of the charge species. Thus all conditions
for an infrared divergent dielectric response are apparently satisfied.
At elevated temperatures the infrared divergence will survive provided

the low lying pair state excitations are thermodynamically inaccessible,




but this is a natural consequence for large enough U, (IUiI/kT>>1)
which should produce an energy barrier between pairing states suffi-
cient to effectively presevent thermally assisted tunneling in physical
systems.

So far we have considered only pair state excitations that involve

essentially transferring a pair of electrons from one pairing center to
another. However, there is another (not completely orthogonal) class

of low-lying excitations associated with pairing interactions that arise
from breaking the pair and "placing" the electrons in states associated j
with non-pairing sites. For example, in the case of metal-semiconductor d
(Schottky) contacts one could envision transferring the electrons from

pairing centers in the semiconductor (say, nonbonded orbitals) to the

Fermi sea. A particular example derived from our general model is shown

in Fig. 3 where we display two different self-consistent solutions to

(3) obtained by using the previously detailed formalism. We have taken

as inputs in calculating these examples: T=0, Qﬁ.3 and G appropriate for

a Cayley lattice of coodination number six. The form of P(Ei’Ui) is

chosen so that P(E,,U;) = x8(U;) S(E;-E ) + (1-x)8(U;-U IW(E;) where

W(EiXB = 5 (B the unperturbed half bandwidth) for .1 < E;/B < .3 and

zero otherwise and x (the concentration of pairing centers) = .l with

UO/B = -1.6. The solid line of Fig. 3 is within our formalism the

density of states corresponding to the numerically determined lowest

energy state of the system while the dashed line represents a low-lying
self-consistently obtained excited state; a fact that we have verified

directly by comparing the energies of the two cases. These two solu-

tions differ from one another by the transfer of electrons from the

pairing centers (which when occupied in this example form a band of

states WUO/Z below Ef as shown in Fig. 3) to the main band with the

unoccupied pairing levels now appearing fUO/Z above Ef. This is exem-

plified in Fig. 3 in going from the ground to excited state by the

slight increase in 'Ef', as well as the decrease in the measure of the

pair band below the main band edge and a concurrent increase in the

measure of the main band.

Further insight into this behavior can be gained by considering a
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single pairing impurity in a tight binding lattice. The situation can

be described by the model Hamiltonian H = % E n, "N aT a. + =,
- ; ig 0 io 1)o7ij Tiojo i
anjfnj++ 0Ejnjo, which represents of course a special case of (2).

Approximating Uj n as before the free energy of the system as a

«,N.

at 3y

function of ﬁ} can be expressed as

(un.+E.) (3G, (E*)/3E)dE
1) (4)

F=K- U€§ - (2/m)Im_| dE£(E) IE — &
“o 1-(Unj+Ej)Gj( )
where K is a constant independent of ﬁ, and we have used the up-down
spin symmetry present for Uj < 0 to replace ﬁjowby gj' The free energy,
F, possesses a double minimum as a function of nj when Ej + Uj/2 lies
in the vicinity of Eg and Uj/R is >>1, as is shown in Fig. 4. 1In
arriving at these results we have chosen for simplicity a rectangular
density of states of half-bandwidth B to model the main band i.e.
Gio(Z) = -(1/2B)1n {(Z—B)AZ+B)} and neglected temperature effects which
are unimportant at moderate temperatures for physically expected Uj;
i.e. Uj 7 .1 ev. At the minima gj satisfies the appropriate form of
Eq. (3) and hence represents the self-consistently obtained average
number of electrons of one spin species at the site j. The two minima
hence correspond to distinctly different occupancy of the pairing center
since in one case ﬁs v 0 and the other ﬁj v 1. That is on one hand
almost two electrons occupy the pairing levels which lie approximately
at (Ej-Uj) while on the other the pairing center is effectively unoc-
cupied and its associated states lie at ij. One can easily show that
the two minima are separated for large Uj by f]Ej + Uj/2 = Efl and hence
such a negative U center can give rise to a low lying excitation of the
system if its characteristic parameters are such that (Ej+Uj/2) ) Eg.
This is of course consistent with the previously obtained results sum-
marized in Fig. 4 and is just a rather more specific case.

Although within the context of the present mean-field like approxi-
mation we cannot make a new linear combination of the two states
represented by the essentially degenerate generalized Hartree-Fock self-
consistent solutions (associated with the minima of Fig. 4) that reduces

further the energy of the system (there is an orthogonality theorem6)

11




such an effect of course physically exists. The resultant intrinsic
matrix element connecting these states should itself be a random
variable because of the different allowed choices of Ei’ Ui sufficient
to produce the same degree of degeneracy. Such being the case, one
expects the density of the very low-lying excitations at a particular

E to behave as E and contribute an infrared divergent dielectric
response (1). We will postpone details of this argument until the next
subsection where we are confronted with an analogous problem in terus
of tunneling modes.

The essentials of the present low-lying pair state picture should
not be smeared out at reasonable temperatures since although e.g. the
details of Fig. 3 may be somewhat different at different temperatures
one still finds a double minimum in F(ﬁi) and the corresponding low-lying
excitations, and once again for large Ui thermally assisted tunneling
from one state to the other would not be expected to occur.

Thus, we have detailed two rather general examples which illustrate
how electron pairing interactions can provide correlated states with
characteristics sufficient to produce the "universal law"; Eq. (1). Of
course these examples are not completely unrelated, and one expects in
many systems that both types of excitations are simultaneously present
and operative in producing an wn-l behavior of x". Although we have
phrased our discussion primarily in terms of amorphous systems where one
expects an appreciable number of weaker/stronger bonds, lone pairs, etc.,
to be present giving rise to the gapless correlated states, it is also
reasonable to expect that such low-lying excitations occur and are
important in more nearly crystalline covalent solids since the remaining
pairing centers in these materials could partially pin the Fermi level
in their vicinity. Another point that should not be overlooked is the
probable presence of an appreciable density of pairing states in the
electronic structure of various interfaces such as oxide-semiconductor,
metal-semiconductor etc. This follows since these interfacial regions
are expected on the whole to be disordered giving rise e.g. to weaker/
stronger bonds. Indeed the presence of such centers can be used to

understand some of the more puzzling electronic behavior of the
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localized inversion layer regime of MOSFET312 where one is dealing with
an oxide-semiconductor interface in contact with a quasi-two dimensional
electron gas. Furthermore, recently15 we have carried out an analysis
of the origin and role of such states at metal-semiconductor (Schottky)
interfaces and the resultant picture has been found to be consistent
with the so-called Covalent-Ionic trend 16 Thus, although interface or
contact effects are usually ignored we expect that such systems should
also exhibit a dielectric loss obeying the "universal law" and a
systematic study of the details could provide a powerful probe of the
interfacial structure.

(b) Dielectrics with Atom—atom or Molecule-molecule or Ion-ion
or Dipole-dipole Interactions

New concepts and ideas on low-energy excitations in real glasses

and spin glasses have been recently introduced by Anderson, et al,17
Jaratote S

Phillips

statistical distribution of localized tunneling levels and/or modes.

and by Anderson.19 They propose the existence of a

A tunneling mode in a real glass is realized by an atom (or group of
atoms) which has an energy E(i) as a function of its generalized posi-
tion coordinate § which exhibits two local minima of energy difference
ME separated by a barrier. Similarly in spin glasses spins are con-
sidered as classical dynamical quantities with a potential energy sur-
face that is a function of the simultaneously specified orientations of
all the spins (i.e. a N-dimensional configuration space); local minima
in the energy correspond to metastable states of the spin glass associ-
ated with different spin configurations. A tunneling mode for spin

glassesl7’19

is defined in spin configuration space as two local minima
separated by a quantum-mechanical energy barrier. Tunneling between one
local minimum and another, if it occurs, involves the rearrangement of
several spins. The linear specific heat observed in real glasses (spin
glasses) comes from tunneling modes whose energy barriers are suffi-
ciently great so that resonant tunneling of atoms (spins) between local
minima does not occur, but sufficiently small such that tunneling
between the two levels can take place during the time span of the
specific heat measurement. Tunneling modes that coatribute to the low

temperature linear specific heat have a density of levels N(AE) per unit

/E which is non-zero, smooth and continuous for AE § kT. Those tunnel-
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ing modes that contribute to the low temperature linear specific heat

17,19

compose only a small subset of the total density of alternate

states or modes with level splitting AE. It has been pointed out17+19
that there are also a large number of modes having small AE which have
their two alternate states inaccessible to each other because their
energy barriers are too large for tunneling to occur. Those pairs of
levels are practically not connected, and some of them contribute to the
zero point entropy of the glass. Indeed experimental measurements of

fused silica20

and glycer0121 has shown that the zero-point entropy is
finite for both.

Let us examine the transient response of the tunneling modes to
sudden potential change caused by fast quantum transition of some
charged species. Tunneling modes whose alternate states are thermo-
dynamically accessible can be eliminated at the outset for consideration
of infrared divergent response at w/2m < 10 GHz. Our interest is in the
low frequency dielectric response where w is smaller or much smaller
than 10 GHz and the ambient temperature is usually room temperature.

Any infrared divergence had it existed would be obliterated by the
effects of finite temperature T which replaces the characteristic t

9,22 for

by an exponentially damped dependence in the response function
t >>f/kT. Thus we need to consider only very low energy tunneling
modes where the two alternaté levels of a mode must be thermodynamically
inaccessible to each other. The very low AE of the tunneling modes
guarantees contribution to the dielectric response at corresponding low
frequencies w A AE/H, and thermodynamical inaccessibility enables the
infrared divergence to survive at finite T. This class of tunneling
modes should exist. Anderson19 pointed out that since the configura-
tions of the atoms (spins) is random, there must be very many locationms
(of order N, the number of atoms or sets of atoms) where there are two
possible configurations of very similar energies El and E2. 1f E1 and
E2 are independent random, variables, then the probability p(AE) of
finding & = lEz'Eﬂ is finite as AE + 0. But physically this is not
true because it is possible to tunnel between the two alternate levels

with a tunneling matrix element T,, even though it is small for thermo-
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dynamically inaccessible tunneling modes. The energy level separation
will be at least AE> |T12|; the off-diagonal matrix element between the
alternate levels. For this class of very low energy inaccessible tun-
neling modes (i.e., < 10 GHz) the physical energy difference AE is
determined by the off-diagonal matrix element AE = |T12|.
3 Let us confine our further discussions to only spin glasses. There,
it has been argued by Anderson,19 that le being a complex matrix element
acts like the x and y components of the random field that prevents the
actual level splitting AE going to zero even though |E1-E2| +0 unless
le * 0 also. For low frequency dielectric response, we are particularly
interested in the AE = |T12| + 0 limit. le consists of two random
variables since it has real and imaginary parts. The probability that
the mode energy AE lie in the interval [TI and [Tl + lel is propor-
tional to |T|d|T|. Hence the density of states of inaccessible, very
low energy, tunneling modes {\|(AE) is proportional to AE. Now the sudden
potential change that induces transitions between the two altermate
levels should not depend on AE. Here we envisage the sudden potential
change inducing a virtual transition of one level to an excited state
which has easy access to the other level. In other words the sudden
potential change introduces an additional transition channel that allows
thermodynamically inaccessible tunneling modes to contribute to low
frequency dielectric response. Within this class of tunneling modes,
the condition for infrared divergence [Vlzl 2N(Al:‘.) = pAE is satisfied.
The universal law follows for spin-glasses. A model of spin glasses in
the Ising model formulation has recently been analyzed,23 in which the
exchange interactions Jij are assumed to be distributed randomly and i
independently of one another over both positive and negative values.
Many features of the spin glasses including the low temperature linear
specific heat have been derived from the model.

The spin-glass system and the resultant spin-spin interaction
models can often be transcribed to other physical models with non-spin

= Well known examples include the Ising model equivalence

interactions.
to a lattice gas and to a binary alloy. A lattice gas is a collection

of atoms (molecules) whose positions can take on only discrete values
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which form a lattice. Each lattice site can be occupied by at most one
atom. In general the potential energy of the system of atoms cor-
responds to a gas in which the atoms are located only on lattice sites
and interact through a two-body potential V(ISi = 5jl)’ The cor-
respondence between the lattice gas and the Ising model is seen by
identifying occupied sites to up spin and empty sites to down spin and
the nearest neighbor atom-atom interaction €44 O -4 Jij’ with Jij the
Ising interaction between spins. A binary alloy in a lattice model
corresponds to sites occupied by A or B atoms (molecules). Let €47
gAB’ €gp represent the interaction energies between the atoms. A site
occupied by an atom A is identified with an up spin and a site occupied

by an atom B with a down spin. The quantity (2€ )/4 then cor-

~€aa"“8B
respond to J in the Ising model.

Consider dielectrics where atom—atom, molecule-molecule or ion-ion
interactions are important. In the lattice gas and/or binary alloy
modelling of dielectrics with random interactions, the equivalence to
the spin glass Ising model implies a dielectric state corresponding to
the spin glass state exists. Such dielectrics will have, in analogy to
spin glasses, tunneling modes which can be either accessible or inac-
cessible. In direct analogy to a tunneling mode in spin glasses which
corresponds to several spins turned over, in these dielectrics a tunnel-
ing mode corresponds to the change of the atomic (molecular or ionic)
occupancy of several sites to get from one energy minimum to the other.
The essential point is the existence of very low energy tunneling modes
in these dielectrics which are only accessible when a sudden potential
change has occurred. This class of tunneling modes again satisfies the
criterion for infrared divergence and hence yields the universal law.
The lattice gas and binary alloy model should be good representations
of many dielectrics including the class of solid state ionic conduct:or25
or solid electrolytes such as AgI, CaF and Na B-alumina. In fact ionic
conductivity for these solids has been calculated in the lattice gas
model.26 In the case of Na B-alumina, there is the repulsive interaction
among the diffusing sodium ions and also the attractive interactions

between the ions and their randomly distributed, compensating defects.
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These properties imply a lattice gas with random interactions. There

27,28 for the existence of tunnel-

is indeed ample experimental evidence
ing modes in alkali B-alumina as well as Ag B-alumina. In particular
there is an excess low temperature specific heat28 contribution which

is nearly linear in T as in the case of spin glasses.

To conclude this Section, we note that the apparent arbitrary
division of dielectrics according to whether electrom pairing inter-
actions or ion-ion interactions, etc., dominate the behavior of the
dielectrics is very natural after all. 1Ions have closed atomic shells
and molecules are usually covalently bonded. 1In both cases electron
pairing interaction has already gone to completion, although the origins
of the pairing interaction in the two cases are entirely different. The
residual interactions are then the ior-ion or the molecule-molecule
interactions, which then should play the important role in providing

correlated states and their excitatioms.

IV. Low Frequency Infrared Divergent Dielectric Response

Having demonstrated that dielectrics with diverse interaction types
should have invariably some very low frequency excitations that con-
tribute a time dependence of the form t™ ™ at large t to some correlation
function, we embark on the derivation of the dielectric response func-
tion29 and examine its properties. The total dielectric polarization
P induced by an electric field E(t) can be calculated by standard

)
methods3o’31

of linear response. The interaction of the polarization
with the electric field is given by He o =B E(t) where P is the

operator of the polarizatiog. The perturbation H. induces a polariza-

t
tion density <P>= <P>_  + I Y(te-t') . E (t')dt' where P(t-t') =

vy > o ) &
-<<§Kt) gﬁt')>> is the dielec¥fric polarizability tensor, and B>y is
the polarization density in the equilibrium state as 5 + 0, which can
be nonzero for some dielectrics such as ferroelectrics. For simplicity
consider the dielectric tensor y to be diagonal. In the case when
classical statistical mechanics”suffice (as often is the case for die-
lectrics at finite temperatures), the response function simplifies to

the time correlation function Wii(t-t') = B < Pi(t) Pi(t')>o where
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<eeedg denotes.averaging with the equilibrium distribution function,
g = l/kBT and Pi(t') the derivative of Pi(t') with respect28 to t'.

1f Pi(t) takes on either of two values + p, and makes transitions
from one value to the other, as in the case of a system of particles with
a dipole moment or the case of a charged particle that can occupy one
of two alternate sites, then ¢ can be readily calculated by general-
izing the method31 to take into account a time dependent jump transition
rate W(T). Rewriting t-t' as T, we wish to calculate w..(T) =
= B<§1(t gl(t-1)> , where the derivative is now with respect to T.
Doing this we obtain the result ¢ (T) = ZBp W(T) exp(-2 f W(T)dT) for
the time dependence of the d1e1ectr1c repsonse function. The task that
remains is to calculate W(T) including the possibility of an infrared
divergence of correlated states excitations. Let ¢(T) describe the
time response of the correlated states to the sudden jump of the elec-
tron (dipole) from one position to another with probability per unit

3,4 . . .
7 and in our notation is

time W . The form of ¢(T) has been given
#(t) = fgc Vghkﬁ) (l-e-lEt)dE/E . We have seen in the last section
that there exists some class of correlated states in the dielectrics we
considered so that VgNCE.) Ebng is proportional to E and satisfies the
condition for infrared divergence in the number of these low energy cor-
related states excitations. The integral, ¢(T) has been evaluated
under this cxrcumstance4 and yields ¢(T) = bV {v+ 1n(1E t) +

E, (iE t)} where y = 0.5722, E, (ix) is a standard 1ntegral which vanishes
at large x. The jump translt1on rate is W(T) = wol R |. om
defining a tlme T by 1/T = 2wo and combining equations, we obtain

¥ (1) = (Bp e )|exp( ¢(r))| exp(- J’ [exp(=¢CTdT/T ) (5)

Consider the case when either the infrared divergent correlated states
do not exist or the coupling Vg of the hopping charges (dipoles) to the
correlated states is vanishingly small. Then in either case ¢(T) * 0
and b (1) = Bp /T exp(- 1/T,) whose Fourier tramsform is X;;(w) =
8p (1+1w16) which is the classical Debye susceptibility. Rec-pturing
the classical Debye laws by turning off the low energy correlated state

excitation is of course no surprise. The interesting point is that
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dielectrics or dielectric interfaces in nature seldom obey the Debye law
which implies there should exist some low energy correlated states exci-
tations which are coupled to the carriers/charges/dipoles of the die-
lectric.

The dielectric response function for Ect >>1 is Wii(r) =
(Bpglro)e-nY (Ec‘t‘)-n exp(-e ™Y Il-n/(l-n) . Ecn) where we have put n =
bVo and assumed n < 1. By inspection one can observe that although the
(ECT)—n term may initially determine the t-dependence of wii’ for suf-
ficiently large values of T ¢ii be dominated by the exponential func-

tion. This occurs roughly at Tp ) (1-n) ™Y Ez L 1tem

.« X;;(w), the
Fourier transform of wii(T) of Eq. (5) can be obtained numerically.
Several representative results for reasonable choices of the parameters
n, E, and T are shown in Fig. 5. A peak in X"(w) exists and its loca-
tion is close to the value of gp = 1/Tp. This post-l/ml-n peak may be
identified with the a or the B peaks commonly observed in dipole systems
such as polymers, liquids, p-n junctions, ferroelectrics, liquid
crystals, cryogenic polymers and some glasses. The approximate peak
position £p = [(l-n)en'Y TOEZ]I/(R-I) is a decreasing function of
increasing Ty and Ec and depends sensitively also on the infrared

divergence exponent n. In general To is temperature dependent and

usually has a clearly defined activation energy E,: TO(T) =

Ty exp(EA/kBT). This alone introduces a temperature dependence into
£

£p x exp(-EA/(l-n)kBT), with an apparent activation energy E, of

EA/(I-n). Increase in temperature will cause a lateral shift of the
universal law and its post-peak along the frequency axis. If a post-
peak either occurs at too low a frequency to be measured or obscured by
another mechanism, it can be revealed at higher frequencies by raising
the temperature. This behavior has been seen for example in the ionic
conductor Hollandite of the composition K1.8M80.9Ti7.1016 as T ranges
from 77K to 230K. If n is close to unity, £

A
E, and corresponds to an unreasonably high "activation energy" as is

can be much larger than
found for the a loss peaks of many materials.1

A wide range of dielectrics have associated with them the presence

of charge carriers of electronic or ionic nature. These charge carriers
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are also evidently responsible for dc conductivity. Thus one expects
that charge carrier hopping transitions, under excitation by a time-
varying electric field, do not necessarily involve only two preferred
sites. Consider the charge carriers that do not jump randomly between
two states/sites, then the dielectric loss is simply proportional to

the probability of exciting low energy correlated state excitations.
With the same time response function of the correlated states ¢(t) as
displayed in preceding paragraphs, x"(w)< _ajaht exp(itw) exp(-¢(T)).
For E_T large, ¢(T) can be approximated by ny + nfn(iE_T). The approxi-

% which is

mate dielectric loss X"(w) is then proportiomal to l/w
identical to the universal law1 and the absence of a loss peak. This
predicted type of dielectric response is indeed observed in a very wide
range of dielectrics of all physical and chemical characteristics, and
interestingly they are always associated with the presence of hopping
charge carriers (Fig. 1). A second universal law (m/u)c)nZ—1 will follow
a first (uVu£)n1-1 on decreasing w if there are available two types of
correlated states that can contribute to infrared divergences. From sum
rule considerations on X'(w), we expect n,<n; which is also observed
(Fig. 1).

V. SUMMARY AND DISCUSSIONS

In this work we have broadly and arbitrarily classified dielectrics
according to the type of interaction or correlations inherent in all
materials. We have found that independent of the type of correlatioms,
a dielectric in general has gapless '"correlated states" whose density
of states is continuous. These "correlated states" have response times
much longer than the time taken by the hopping between sites of charged
particles or jumping between orientations of dipoles. Hence the hopping
or jumping movements can be considered instantaneous as far as the
"correlated states" are concerned and they experience a sudden change of
the potential induced by the charged particles or dipoles. The tran-
sient response of the system is the emission of low-energy excitations
of the "correlated states" which cause the response to have a "~

time dependence or an infrared divergent like I/u.)]‘-n frequency response

20




rw*“"‘*w*“*ﬁ‘ . — e - -

of the dielectric loss. We have thus arrived at a fundamental mechanism
for the empirical mn~1 dependence (accompanied sometimes by a peak at
low enough (y) of the dielectric loss obeyed by nearly all dielectrics
and the mechanism is operative independent of the type of physical
structure and chemical bonding in the materials, and whether the
polarization is associated with permanent dipoles or hopping charge car-
riers of electronic or ionic nature.

This arbitrary classification of dielectrics according to the
present scheme is quite general after all. The classification is based
on the type of dominant correlations and the correlated states they
render. Detailed developments of the electron pairing correlations and
of the ion-ion correlations have been given. Correlated states are
identified in both cases. Types of correlations other than those
between electrons or between ions could conceivably lead to some sort of
"correlated states'" as has been demonstrated explicitly for the cases of
electron pairing correlations and the ion-ion correlation. These cor-
related states although they may have very different physical origin and
interpretations dependent on which class of dielectrics share some com-
mon important properties. These include the thermodynamical inacces-
sibility of these states from one to another, and yet the possibility of
excitation when a sudden change in potential occurs. The very low
energy excitations of these correlated states have an infrared divergent
behavior, and lead to the low frequency dielectric response obeying a
universal law, y"(w) « l/ml_n, with sometimes the appearance of a post
peak at low enough w. The Debye law holds only in the probably seldom
realized cases where the correlated state excitations are either non-
existent or ineffective because of weak coupling to the hopping charges/
dipoles that contribute to the Debye susceptibility. The invariable
deviation from the Debye laws in most dielectrics implies that the
existence of very low energy correlated state excitations are often the
rule rather than the exception. We emphasize the importance here of not
only the recognition of the Curie-von Schweidler law as an infrared
divergence phenomenon but also the subtle task of identifying the (cor-

related state) excitations that are responsible for it. There is an
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important difference between the present case and the Cerenkov (or
Bremstrahlung) radiation or the X-ray edge singularity problem, since
energies in the present regime of interest are so low that for these
cases, the spontaneous photons or electron-hole pairs produced infrared
divergence is entirely smeared out at finite temperatures. This is not
the case here for the particular correlated states responsible for such
low energy dielectric response singularities are thermodynamically inac-
cessible from one to another. The infrared divergence is retained at
finite temperatures even 10 GHz. In all infrared divergence problems,
an upper cut off Ec of the excitation energies E is needed either to
insure convergence at large E or simply that we run out of these excita-
tions as E increases. In the specific examples we discussed here, the
upper cut-off energies are deduced by examining the nature of these

4y may be modified at low

excitations. The universal law y"(w) «l/wl
enough frequencies in dipolar dielectrics by the introduction of a peak,
and this may or may not occur within the frequency spectrum scanned,
dependent on the magnitude of Ec, the upper cut-off of the correlated
state excitations, and the value of n. The occurrence of a post-peak in
some classes of dielectrics and the non-occurrence in other classes can
be correlated. Order of magnitude estimates of Ec are possible for
certain classes of dielectrics and the post-peak frequency predicted
seems to be consistent with experimental data. The temperature depen-
dénce of the post-peak position is also consistent with experimental
data.

In addition to bulk dielectrics we have considered also the inter-
faces of a dielectric with another dielectric or a semiconductor or a
metal. An interesting example is the thermal oxidized Si-SiO2 inter-
face in MOS device structures. The present authors13 have investigated
the local electron pairing interaction on dangling bonds and weaker/
stronger bondg (a concept also introduced by Andersonlo) and the
resultant electronic structure of the Si-SiO2 interfacéﬁ Both the
dangling bonds and the weaker/stronger bonds give rise to pair states
which are strongly self-trapped and have the interesting dynamic charac-

ter when electrons are excited in pairs. Correlated pair states at the
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interface give rise to electron pair excitations with arbitrary low
energies and should give rise to an infrared divergent dielectric
response. We wish to point out that low frequency dielectric response
measurements of the interfacial region could be a powerful and novel
tool for the characterization of devices. These measurements may have
the potential of yielding more in depth understanding of interfaces when
coupled with conventional measurements such as capacitance versus gate

voltage.
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Fig. 1. A schematic representation of the various observed types of

dielectric response in the entire range of solids. The upper
set of diagrams represent the shapes of the logarithmic plots
of x'(w)-chain~dotted lines, and X"(w)-solid lines, ranging
from the ideal Debye through the & and B peaks and on to the
universal dependence for charged carrier systems. The limiting
forms of behaviour are represented by the strong low-frequency
dispersion with small values of n and by the limiting case of
frequency-independent "lattice response'" with n W 1. The lower
set of diagrams represent the corresponding complex X plots.
The various types of materials obeying the respective types of
response are shown and the presumed polarization mechanisms are

indicated.
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Fig. 5. The behavior of X', X' in the present theory for several dif-

ferent values of n. Note the peak shape is independent of

a = e‘“*y (l-n)ToEcn but strongly dependent on n. The slope
m of each of these log (X') versus log (W) plots varies con-
tinuously from zero to ome for log (W) < log (uwp), where W,

is the post peak position. m for a fixed decrement of log (W),
i.e. at a value of Wwith log (Wwp) < 0 and fixed) decreases as
n increases. In view of this property one should not take the

asymptote of the lowest available frequency measurements of
X" (w) and attach a universal meaning to the slope of that

asymptote but rather analyze the local slope m at a fixed

decrement below the post peak.
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